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Abstract

In a recent series of papers a new type of objective function in location theory, called ordered median function, has been
introduced and analyzed. This objective function uni5es and generalizes most common objective functions used in location
theory. In this paper we identify 5nite dominating sets for these models and develop polynomial time algorithms together
with a detailed complexity analysis. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a recent series of papers a new type of objec-
tive function in location theory, called ordered me-
dian function, has been introduced and analyzed, see
Francis et al. [8], Nickel [18], Nickel and Puerto [19],
Puerto and Fern?andez [21,22] and Rodr?@guez-Ch?@a et
al. [23]. In this paper we develop algorithms for mod-
els using this objective function which is a general-
ization of the most popular objective functions: me-
dian, center, centdian, k-centrum, amongst many oth-
ers (see Mirchandani and Francis [17] and Slater [24]
for a description of these functions). We study the or-
dered median problem on several metric spaces: net-
works with positive and negative node weights, tree
networks and the rectilinear space Rd; d¿ 2. More-
over, we discuss the discrete versions and also the
problem de5ned on directed networks.

∗ Corresponding author.
E-mail address: atamir@math.tau.ac.il (A. Tamir).

Formally, the problem is de5ned as follows. Let X
be a metric space equipped with a metric d(:; :): De-
note by V = {v1; : : : ; vn}; V ⊆ X , the set of exist-
ing facilities (demand points). Each vi is associated
with a weight wi; i = 1; : : : ; n. Note that we do not
require wi to be positive. In those cases where wi is
negative we speak of obnoxious facilities [3]. Also
given is a vector � = (�1; : : : ; �n) with non-negative
entries.
For each x∈X de5ne di(x):=wid(x; vi); i =

1; : : : ; n; d(x):=(d1(x); : : : ; dn(x)) and

d6(x):=(d(1)(x); : : : ; d(n)(x));

where d(i)(x) is the ith smallest element in the
multi-set {wid(x; vi)}n

i=1.
The objective is to 5nd x∈X minimizing

M�(x):=
n∑

i=1

�id(i)(x):

0167-6377/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
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Table 1
Summary of complexity results for ordered median problems

Complexity bounds

Networks

Undirected Directed Rectilinear Rd Discrete

General Trees

Generala O(mn2 log n) O(n3 log n) O(mn log n) O(n2d+1 log n) O(n2 log n)
ordered median

Concave O(n2 log n) O(n2)d O(n2 log n)
ordered median

Convex O(mn2 log n) O(n log2 n) O(n2 log n) O(n log2d n) O(n log2 n)f

ordered median

k-centrumb O(mn log n)c O(n log n) O(n2 log n) O(n)e O(n log2 n)g

aArbitrary node-weights.
bNon-negative node-weights.
cUnweighted. See [25].
dUnweighted.
eSee [20].
f Discrete tree.
gUnweighted rectilinear planar case.

An optimal solution to this problem is called an
ordered median. If wj ¿ 0, for j = 1; : : : ; n, and
�16 · · ·6 �n (�1¿ · · ·¿ �n), we will call the model
convex (concave). Notice that the classical center
and median problems correspond, respectively, to the
cases where � = (0; : : : ; 0; 1), and � = (1; : : : ; 1; 1).
The centdian and the k-centrum models are derived
by setting �=(�; : : : ; �; 1), and �=(0; : : : ; 0; 1; k: : :; 1),
respectively, (� is a positive number bounded by 1.)
Note that the four special cases are convex when
wj ¿ 0, for j = 1; : : : ; n.
The rest of the paper is organized as follows.

In Section 2 we study the single facility ordered
median problem in general undirected and directed
networks and present O(mn2 log n) and O(mn log n)
algorithms, respectively. For (undirected) trees the
induced bound is O(n3 log n). We show how to im-
prove this bound to O(n log2 n) in the convex case.
Section 3 deals with the rectilinear ordered me-
dian problem in Rd, for a 5xed d. We present an
O(n log2d n) algorithm for the convex case. Finally,
in Section 4, we develop some polynomial results
on the discrete version of the ordered median model.
Table 1 summarizes the results presented in this
paper.

2. Finding the single facility ordered median of a
general network

Let G = (V; E) be an undirected graph with node
set V = {v1; : : : ; vn} and edge set E = {e1; : : : ; em}.
Each edge ej; j = 1; 2; : : : ; m, has a positive length
lj, and is assumed to be recti5able. In particular,
an edge ej:=[vr; vs] is identi5ed with an interval of
length lj so that we can refer to its interior points.
Let A(G) denote the continuum set of points on the
edges of G. We view A(G) as a connected and closed
set which is the union of m intervals. Let P[vi; vj]
denote a simple path in A(G) connecting vi and vj.
We refer to interior points on an edge by their dis-
tances along the edge from the two nodes of the
edge. The edge lengths induce a distance function on
A(G). For any pair of points x; y∈A(G), we denote
by d(x; y) the length of a shortest path P[x; y], con-
necting x and y: A(G) is a metric space with respect
to the above distance function. We refer to A(G)
as the network induced by G and the edge lengths
{lj}; j = 1; : : : ; m. A closed and connected subset of
A(G) which does not contain cycles is called a sub-
tree. If a subtree is contained in an edge it is called a
sub-edge.



J. Kalcsics et al. / Operations Research Letters 30 (2002) 149–158 151

In this section we deal with the case where X =
A(G). However, the de5nition below applies for any
metric space X .
For all vi; vj ∈X; vi �= vj; wiwj �=0 de5ne

EQij:={x∈X : wid(vi; x) = wjd(vj; x)}
and let EQ′

ij be the relative boundary of EQij. De5ne
EQ:=

⋃
i; j
i �=j

EQ′
ij. The points in EQ are called equilib-

rium points of X . Note, for example, that in the planar
rectilinear case the equilibrium set coincides with the
boundary of the concept of a bisector. The properties
of these sets are well-known. The interested reader is
referred to [12,19,23].
A point x on an edge e = [vi; vj]∈E is called a

bottleneck point of node vk ; if wk �=0; and

d(x; vk) = d(x; vi) + d(vi; vk) = d(x; vj) + d(vj; vk):

Let BNi denote the set of all bottleneck points of a
node vi ∈V and let BN :=

⋃n
i=1 BNi be the set of all

bottleneck points of the graph.
De5ne NBN :=

⋃n
i=1

wi¡0

BNi: A point in NBN is

called a negative bottleneck point.
To introduce our algorithmic results we 5rst iden-

tify 5nite sets of points containing an ordered median.
Such sets are called @nite dominating sets (FDS) [11].
Nickel and Puerto [19] proved that V∪EQ is an FDS

for the ordered median problem with non-negative
weights. When some of the node weights are nega-
tive the results in [19] may not hold. However, it is
possible to extend the result as follows:

Theorem 1. The set V ∪ EQ ∪NBN is a @nite domi-
nating set for the single facility ordered median prob-
lem with general node weights.

Proof. Let G be an undirected graph. Augment G by
inserting the equilibria in EQ and negative bottleneck
points from NBN as new nodes. A(G) is now decom-
posed into sub-edges where each sub-edge connects
two adjacent elements of V ∪ EQ ∪ NBN .
From the de5nition of equilibrium points, it follows

that there exists a permutation of the weighted dis-
tance functions in {dj(x)}n

j=1 which is 5xed for all the
points x on every sub-edge. Therefore, the ordered me-
dian function reduces to the classical median function

on every sub-edge. Since we include the negative bot-
tleneck points NBN in the decomposition of the net-
work, the distance functions are now piecewise linear
and concave on every sub-edge. Therefore the desired
result follows.

We next show how to solve the ordered median
problem on a general network. We solve the problem
independently on each one of the edges, in O(n2 log n)
time. Restricting ourselves to a given edge ei=[vs; vt],
from the above theorem we know that there exists a
best point xi with respect to the objective function,
such that xi is either a node, an equilibrium point
or a negative bottleneck point. Hence, it is suNcient
to calculate the objective at the two nodes of ei, the
set Ki of O(n2) equilibrium points, and the set Li

of O(n) negative bottleneck points on ei. (Note that
if wj ¿ 0; j = 1; : : : ; n, we can ignore the bottleneck
points.)
Generating the bottleneck and equilibrium points

on ei: Let x denote a point on ei. (For convenience
x will also denote the distance, along ei, of the point
from vs.) For each vj ∈V; d(x; vj) is a piecewise lin-
ear concave function with at most one breakpoint.
(If the maximum of d(vj; x) is attained at an interior
point, this is a bottleneck point.) Assuming that all
internodal distances have already been computed, it
clearly takes constant time to construct dj(x) and the
respective bottleneck point. If wj ¿ 0; dj(x) is con-
cave and otherwise dj(x) is convex. To compute all
the equilibrium points on ei, we calculate in O(n2) to-
tal time the solutions to the equations dj(x) = dk(x),
where vj; vk ∈V; vj �= vk . To conclude, in O(n2) to-
tal time we identify the set L∗

i of O(n) bottleneck
points and the set Ki of O(n2) equilibrium points. Let
Ni = {vs; vt} ∪ L∗

i ∪ Ki.
Computing the objective function at all points in

Ni: First we sort in O(|Ni| log |Ni|) time the points in
Ni. For any x in the interior of the sub-edge connecting
xq and xq+1, where xq; xq+1 are two consecutive ele-
ments in the sorted list of Ni, the order of {dj(x)}n

j=1
does not change. In particular, the objective value at
xq+1 can be obtained from the objective value at xq in
constant time. The 5rst point in the sorted list is x=vs

and the objective value can be obtained in O(n log n)
time. Therefore, the time needed to compute the ob-
jective for all points in Ni is O(n log n+ |Ni| log |Ni|).
To summarize the total eOort needed to compute a best
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solution on ei is

O(n2 + n log n + |Ni| log |Ni|) = O(n2 + |Ni| log |Ni|):

The time to 5nd a single facility ordered median
of a network is therefore O(mn2 + mn2 log n) =
O(mn2 log n).
The above complexity can be improved for some

important special cases discussed in the literature.
For example, if wj ¿ 0 for all vj ∈V , then we can
disregard the bottleneck points although this does
not improve the complexity. Moreover, if in addition
�1¿ �2¿ · · ·¿ �n, then an optimal solution on ei is
attained either at vs or vt [19]. The objective at each
node can be computed in O(n log n) and therefore, in
this case, the optimal single facility ordered median
point is obtained in O(n2 log n) time.

The ordered median problem on a directed graph
can be treated similarly to the undirected case as
the following analysis shows. Let GD = (V; E) be
a (strongly connected) directed graph. Following
Handler and Mirchandani [9], the weighted dis-
tance between a point x∈A(GD) and vi ∈V is given
by Pd(x; vi) :=wi(d(x; vi) + d(vi; x)). Denote Pdi(x) :=
Pd(x; vi); for i=1; : : : ; n, and Pd(x) := ( Pd1(x); : : : ; Pdn(x)).
The de5nitions of the other concepts carry over from
the undirected case.
The ordered median problem on a directed network

can be written as

min
x∈A(GD)

M�(x):=
n∑

i=1

�i Pd(i)(x): (1)

First, we make some observations on the above dis-
tance functions.
Let e = [vi; vj]∈E be an edge of the directed graph

GD, directed from vi to vj, and x a point in the interior
of this edge. Then for a node vk ∈V , the distance
function Pdk(·) is constant on the interior (vi; vj) of
the edge [vi; vj]. Moreover, if wk ¿ 0 (respectively,
wk ¡ 0) then Pdk(vi); Pdk(vj)6 Pdk(x) (respectively,
Pdk(vi); Pdk(vj)¿ Pdk(x)) for all x∈ (vi; vj). With this
observation we can derive a 5nite dominating set for
this problem as in the undirected network case.

Theorem 2. The ordered median problem on directed
networks with non-negative node weights always has
an optimal solution in the node-set V . If in addition

�1 ¿ 0 and wi ¿ 0; ∀i = 1; : : : ; n; then any optimal
solution is in V .

Proof. Let e=[vi; vj]∈E and let x be an interior point
of the edge [vi; vj]. It is suNcient to show that

max{M�(vi); M�(vj)}6M�(x) =
n∑

k=1

�k Pd(k)(x): (2)

Without loss of generality; we prove M�(vi)6M�(x).
Let us consider vi and let vk ∈V be an arbitrary
node. From the observation above; we know that
Pdk(vi)6 Pdk(x); k = 1; : : : ; n. Therefore; Pd(vi)6 Pd(x);
and by Theorem 1 in [8] also Pd6(vi)6 Pd6(x). Eq.
(2) follows by taking the scalar product with �.
Next, suppose that �1 ¿ 0, and wj ¿ 0, for j =

1; : : : ; n. Therefore, we obtain 06d(j)(vi)6d(j)(x),
for j = 1; : : : ; n, and 0 = d(1)(vi)¡ d(1)(x). Hence,
since �1 ¿ 0, we get M�(vi)¡ M�(x) and the result
follows.

From this result, the case of non-negative node
weights can be solved in O(n2 log n) time by evaluat-
ing the function at each node of the network.
The case with positive and negative weights can

also be solved by evaluating at most O(m+n)=O(m)
points in A(GD). (Since for strongly connected graphs
m¿ n.) Indeed, since the functions Pdk(x) are constant
in the interior of an edge we only need to evaluate
the objective function at an arbitrary interior point xe

of each edge e∈E. Based on the previous analysis
we can solve the problem with positive and negative
weights in O(mn log n) time.
We summarize the above results in the following

Theorem.

Theorem 3. An ordered median of an undirected
(directed) network can be found in O(mn2 log n)
(O(mn log n)) time. Moreover; if wj ¿ 0; for all
vj ∈V ; and in addition for the undirected case
�1¿ · · ·¿ �n¿ 0; then the complexity bounds re-
duce to O(n2 log n).

2.1. Finding the single facility ordered median of a
tree

Throughout this section we will use the concept of
convexity on trees as de5ned in Dearing et al. [6].
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Rodr?@guez-Ch?@a et al. [23] showed that when wi¿ 0,
for i=1; : : : ; n, the ordered median function is convex
on the plane with respect to any metric generated by
norms, if the �-vector satis5es �16 �26 · · ·6 �n.
Next we prove an analogous result for trees.

Lemma 4. Let T = (V; E) be a tree network and
wi¿ 0; i = 1; : : : ; n. If �16 �26 · · ·6 �n then the
function M�(·) is convex on T .

Proof. Let � satisfy �16 �26 · · ·6 �n. By [6];
wid(x; vi) is convex for x∈A(T ) and i = 1; : : : ; n.
Denote by &(n) the set of all permutations of the
set {1; : : : ; n}. Let '∈&(n) be a 5xed permutation
of the set {1; 2; : : : ; n} and x∈A(T ). The function
f'(x) =

∑n
i=1 �iw'(i)d(x; v'(i)) is convex. Therefore;

the function

g(x) = max
*∈&(n)

{
n∑

i=1

�iw*(i)d(x; v*(i))

}

is also convex as maximum of convex functions.
Since the �i’s are non-decreasing, the permutation

'∈&(n), which sorts the weighted distance functions
wid(x; vi) in the vector d6(x) for a given x∈A(T ), is
identical to the permutation *∗, which maximizes g(x)
for this x (see e.g. Theorem 368 in Hardy et al. [10]).
Therefore, we obtain

M�(x) = max
*∈&(n)

{
n∑

i=1

�iw*(i)d(x; v*(i))

}

and hence the desired result follows.

For trees the same discretization results as for gen-
eral networks hold with the additional simpli5cation
that we have no bottleneck points on trees and there-
fore V ∪EQ is a 5nite dominating set for the problem
with arbitrary weights.
From the analysis in the previous section (since

m= n− 1), we can conclude that a best solution on a
tree can be found in O(n3 log n) time. Improvements
are possible for some important cases.

2.1.1. The unweighted case: wj = w for all vj ∈V
In this case, each pair of distinct nodes, vj; vk con-

tributes one equilibrium point. Moreover, such a point
is the midpoint of the path P[vj; vk ], connecting vj and

vk . Thus,
∑

ei∈E |Ni| = O(n2). Let T (n) denote the
total time needed to 5nd all the equilibrium points
on the tree network. Then from the discussion on a
general network we can conclude that the total time
needed to solve the problem is O(T (n) + n2 log n +∑

ei∈E |Ni| log |Ni|) = O(T (n) + n2 log n).
We next show that T (n) = O(n2 log n). More

speci5cally, we show that with the centroid decom-
position approach, in O(log n) time we can locate
the equilibrium point de5ned by any pair of nodes
{vi; vj}.
In the preprocessing phase we obtain in O(n log n)

total time a centroid decomposition of the tree T [16].
In a typical step of this process we are given a subtree
T ′ with q nodes, and we 5nd, in O(q) time an un-
weighted centroid, say v′, of T ′, We also compute in
O(q) time the distances from v′ to all nodes in T ′: v′

has the property that each one of the connected com-
ponents obtained from the removal of v′ from T ′ con-
tains at most q=2 nodes.
Consider now a pair of nodes vi and vj and let r

be a positive number satisfying r6d(vi; vj). The goal
is to 5nd a point x on the path P[vi; vj] whose dis-
tance from vi is r. (The equilibrium point is de5ned
by r =d(vi; vj)=2:) We use the above centroid decom-
position recursively. First, we consider the centroid,
say vk , of the original tree T . Suppose that vi is in a
component T ′ and vj is in a component T ′′. If T ′=T ′′

we proceed recursively with T ′. Otherwise, vk is on
P[vi; vj]. If d(vi; vk)¿ r; x is in T ′. We proceed recur-
sively with T ′, where the goal now is to 5nd a point
on the path P[vi; vk ] whose distance from vi is r. If
d(vi; vk)¡ r; x is in T ′′ and now recursively we pro-
ceed with T ′′ looking for a point on P[vk ; vj] whose
distance from vj is d(vi; vj)−r. This process terminates
after O(log n) steps, each consuming constant eOort.
At the end we locate an edge containing the point x on
P[vi; vj] whose distance from vi is exactly r. The point
x is found in constant time solving the linear equation
di(x) = r.
A further improvement is possible if we assume

wj=w ¿ 0 for all vj ∈V and �1¿ �2¿ · · ·¿ �n¿ 0.
From the previous section we know that in this case
it is suNcient to compute the objective function at the
nodes only, since there is an optimal solution which is
a node. Then, we need to compute and sort, for each
node vj, the set of distances {d(vj; vk)}vk∈V . The total
eOort needed to obtain the n sorted lists of the distances
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is O(n2) [13]. Therefore, in this case the problem is
solvable in O(n2) time.

2.1.2. The convex case: wj ¿ 0 for all vj ∈V , and
06 �16 �26 · · ·6 �n

We 5rst solve this case on a path graph in
O(n log2 n) time. For a path graph we assume that the
nodes in V are points on the real line. Using the con-
vexity of the objective, we 5rst apply a binary search
on V to identify an edge (a pair of adjacent nodes),
[vi; vi+1]; containing an ordered median x. Since it
takes O(n log n) time to evaluate the objective at any
point vj, the edge [vi; vi+1] is identi5ed in O(n log2 n)
time. Restricting ourselves to this edge we note that
for j = 1; : : : ; n; wj|x − vj| is a linear function of the
parameter x.
To 5nd an optimum, x∗, we use the general para-

metric procedure of Megiddo [15], with the modi-
5cation in Cole [5]. The reader is referred to these
references for a detailed discussion of the paramet-
ric approach. We only note that the master program
that we apply is the sorting of the n linear functions,
{wj|x − vj|}; j = 1; : : : ; n (using x as the parameter).
The test for determining the location of a given point
x′ w.r.t. x∗ is based on calculating the objective M�(x)
and determining its one-sided derivatives at x′. This
can clearly be done in O(n log n) time. We now con-
clude that with the above test, the parametric approach
in [15,5] will 5nd x∗ in O(n log2 n) time.
We now turn to the case of a general tree. As shown

above, in this case the objective function is convex
on any path of the tree network. We will use a binary
search (based on centroid decomposition) to identify
an edge containing an optimal solution in O(log n)
phases.
In the 5rst phase of the algorithm we 5nd, in O(n)

time, an unweighted centroid of the tree, say vk . Each
one of the connected components obtained by the re-
moval of vk contains at most n=2 nodes. If vk is not
an optimal ordered median, then due to the convex-
ity of the objective, there is exactly one component,
say T j, such that any optimal solution is either in that
component or on the edge connecting the component
to vk . We proceed to search in the subtree induced by
vk and T j. Since T j contains at most n=2 nodes, this
search process will have O(log n) phases, when at the
end an edge containing an optimal solution is identi-

5ed. To locate the ordered median on an edge we use
the above O(n log2 n) for path trees.

To evaluate the total complexity of the above al-
gorithm we now analyze the eOort spent in each one
of the O(log n) phases. At each such iteration a node
(centroid) vk is given and the goal is to check the op-
timality of vk and identify the (unique) direction of
improvement if vk is not optimal. To facilitate the dis-
cussion, let {vk(1); : : : vk(l)} be the set of neighbors of
vk . To test optimality it is suNcient to check the signs
of the derivatives of the objective at vk in each one of
the l directions. (There is at most one negative deriva-
tive.)
We 5rst compute and sort in O(n log n) time the

multi-set {wjd(vj; vk)} of weighted distances of all
nodes of the tree from vk . Let Lk denote this sorted
list. (We also assume that the weights {wi}i=1; :::; n have
already been sorted in a list W .)
Suppose 5rst that all the elements in Lk are distinct.

We refer to this case as the non-degenerate case. Let
' denote the permutation of the nodes corresponding
to the ordering of Lk , i.e.,

w'(1)d(v'(1); vk)¡ · · ·¡ w'(n)d(v'(n); vk):

Then the derivative of the objective at vk in the
direction of its neighbor vk(t) is given by

−
∑

v'(i)∈T k(t)

�iw'(i) +
∑

v'(i)∈V\T k(t)

�iw'(i):

Equivalently, the derivative is equal to
n∑

i=1

�iw'(i) − 2
∑

v'(i)∈T k(t)

�iw'(i):

It is therefore clear that after the O(n log n) eOort
needed to 5nd ', we can compute all l directional
derivatives in O(n) time.
Next we consider the case where the elements in

Lk are not distinct. Assume without loss of general-
ity that wj ¿ 0, for j = 1; : : : ; n. In this case we parti-
tion the node set into equality classes, {U 1; : : : ; U p},
such that for each q = 1; : : : ; p; wjd(vj; vk) = cq for
all vj ∈U q, and c1 ¡ c2 ¡ · · ·¡ cp. (Note that c1 =0
and vk ∈U 1:)
Consider an arbitrary perturbation where we add

0j to the length of edge ej; j = 1; : : : ; m. Let d′

denote the distance function on the perturbed tree
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network. If 0 is suNciently small all the elements in
the set {wjd′(vj; vk)} are distinct, and for each pair
of nodes, vs; vt with vs ∈U q and vt ∈U q+1; q=1; : : : ;
p − 1; wsd′(vs; vk)¡ wtd′(vt ; vk). Therefore, as dis-
cussed above, in O(n log n) time we can test whether
vk is optimal with respect to the perturbed problem,
and if not 5nd the (only) neighbor of vk , say vk(t), such
that the derivative in the direction of vk(t) is negative.
In the next lemma, we will prove that if vk is optimal

for the perturbed problem it is also optimal for the
original problem. Moreover, if vk is not optimal for the
original problem and vi = vk(t) is a neighbor de5ning
a (unique) direction of improvement for the original
problem, then it also de5nes the (unique) improving
direction for the perturbed problem.
This result will imply that in O(n log n) time we can

test the optimality of vk for the original problem, and
identify an improving direction if vk is not optimal.

Lemma 5. Let vi = vk(t) be a neighbor of vk ; and
let Ai and Ai(0) denote the derivatives of the objec-
tive M�(x) at vk in the direction of vi for the orig-
inal and the perturbed problems; respectively. Then
Ai(0)6Ai.

Proof. Because of the additivity property of direc-
tional derivatives it is suNcient to prove the result
for the case where V is partitioned into exactly two
equality classes; U 1; U 2; where U 1={vk}; c1=0; and
wjd(vj; vk) = c2 for all vj �= vk .

Consider an arbitrary neighbor vi = vk(t) of vk , and
let T i be the component of T , obtained by removing vk ,
which contains vi. Let ni denote the number of nodes in
T i. Let * denote the permutation arranging the ni nodes
in T i in a non-increasing order of their weights, and
the remaining n−ni nodes in a non-decreasing order of
their weights. We have v*(t) ∈T i; t =1; : : : ; ni; v*(t) �∈
T i; t=ni +1; : : : ; n; w*(1)¿w*(2)¿ · · ·¿w*(ni), and
w*(ni+1)6w*(ni+2)6 · · ·6w*(n). Then, it is easy to
verify that

Ai =−
ni∑

t=1

�tw*(t) +
n∑

t=ni+1

�tw*(t):

Next, to compute Ai(0), consider the perturbed
problem and the permutation ' arranging the nodes in
an increasing order of their distances {wjd′(vj; vk)}.
Speci5cally, 0 = wkd′(vk ; vk) = w'(1)d′(v'(1); vk),

and

w'(1)d′(v'(1); vk)¡ · · ·¡ w'(n)d′(v'(n); vk):

With the above notation it is easy to see that

Ai(0) =−
∑

j|v'( j)∈T i

�jw'( j) +
∑

j|v'( j) �∈T i

�jw'( j):

We are now ready to prove that Ai(0)6Ai.
We will successively bound Ai(0) from above as

follows: suppose that there is an index j such that
v'( j) ∈T i, and j ¿ ni, i.e., there exists a node vt ∈T i

such that in the expression de5ning Ai(0); wt is mul-
tiplied by −�j for some j ¿ ni. Since |T i|= ni, there
exists a node vs �∈ T i such that ws is multiplied by �b

for some index b6 ni, in this expression. Thus, from
b6 ni ¡ j, we have �b6 �j, which in turn yields

−�jwt + �bws6− �bwt + �jws:

The last inequality implies that if we swap ws and
wt , multiplying the 5rst by �j and the second by −�b

we obtain an upper bound on Ai(0). Applying this
argument successively and swapping pairs of nodes,
as long as possible, we conclude that there is a per-
mutation '′ of the nodes in V , such that each node
v'′( j) ∈T i is matched with −�j, for some 16 j6 ni;
each node v'′( j) �∈ T i is matched with �j, for some
ni ¡ j6 n, and

Ai(0)6−
ni∑

j=1

�jw'′( j) +
n∑

j=ni+1

�jw'′( j):

Denote the right-hand side of the last inequality by
B'′

i (0).
To conclude the proof consider the entire collection

of all permutations '′′, which assign every node in T i

to a (unique) index 16 j6 ni, and every node which
is not in T i to a (unique) index ni ¡ j6 n. For each
such permutation consider the respective expression

B'n

i (0) =−
ni∑

j=1

�jw'′′( j) +
n∑

j=ni+1

�jw'′′( j):

From Theorem 368 in Hardy et al. [10], mentioned
above, the maximum of the above expression over all
such permutations is achieved for the permutation *,
which arranges the ni nodes in T i in a non-increasing
order of their weights, and the remaining n−ni nodes
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not in T i in a non-decreasing order of their weights.
We note that this maximizing permutation is exactly
the one de5ning Ai. Therefore,

Ai(0)6B'′
i (0)6B*

i (0) = Ai:

To summarize, to check the optimality of a node
vk in the original problem, we can use the following
procedure:
Compute and sort elements in set {wjd(vj; vk)}.

From the sorted sequence de5ne the equality classes
{U 1; : : : ; U p}. Arbitrarily select an ordering (permu-
tation) of the nodes in V , such that for any q = 1; : : : ;
p−1, and any pair of nodes vj ∈U q; vt ∈U q+1; vj

precedes vt . Let ' denote such a selected permutation.
The permutation de5nes a perturbed problem, which
in turn corresponds to a non-degenerate case. There-
fore, as noted above, in O(n log n) time we can check
whether vk is optimal for the perturbed problem. If vk

is optimal for the perturbed problem, i.e., Ai(0)¿ 0
for each neighbor vi, by the above lemma it is also
optimal for the original problem. Otherwise, there is
a unique neighbor of vk , say vi = vk(t) such that the
derivative of the perturbed problem at vk in the direc-
tion of vi is negative. From Lemma 5 to test optimality
of vk for the original problem, it is suNcient to check
only the sign of the derivative of the original problem
at vk in the direction of vi. The latter step can be done
in O(n) time.
To summarize, the algorithm has O(log n) phases,

where in each phase we spend O(n log n) time to test
the optimality of some node, and identify the unique
direction of improvement if the node is not optimal.
At the end of this process an edge of the given tree
which contains an optimal solution is identi5ed. As
explained above, the time needed to 5nd an optimal
solution on an edge is O(n log2 n) time. Therefore, the
total time to solve the problem is O(n log2 n).

We note in passing that the above approach is ap-
plicable to the special case of the k-centrum problem.
Since testing optimality of a node for this model will
take only O(n) time, the total time for solving the
k-centrum problem will be O(n log n). This bound im-
proves upon the complexity given in Tamir [25] by a
factor of O(log n).
The next theorem summarizes the complexity re-

sults for tree graphs we have obtained above.

Theorem 6. An ordered median of an undirected tree
can be computed in O(n3 log n) time.

1. In the unweighted case; i.e.; wj = w for all vj ∈V ;
the time is O(n2 log n). If; in addition; w ¿ 0; and
�1¿ · · ·¿ �n¿ 0; the time is further reduced to
O(n2).

2. If wj ¿ 0; for all vj ∈V ; and 06 �16 · · ·6 �n;
the ordered median can be found in O(n log2 n)
time.

3. Finding the ordered median in the rectilinear
space

In this case the metric space is X = Rd equipped
with the rectilinear metric, where d(x; y) = ‖x − y‖1
:=

∑d
i=1 |xi − yi|.

Suppose that d is 5xed, and consider 5rst the general
case of the ordered median. The collection consisting
of the O(n2) (piecewise linear) bisectors {wjd(x; vj)−
wid(x; vi) = 0}; i; j = 1; : : : ; n; and the O(n) hyper-
planes, which are parallel to the axes and pass through
{v1; : : : ; vn} induces a cell partition of Rd. This par-
tition can be computed in O(n2d) time for any 5xed
d¿ 2 (see Edelsbrunner [7]). If there is a 5nite or-
dered median, then at least one of the O(n2d) vertices
of the partition is an ordered median. (Notice that only
if there are some negative weights 5nite ordered medi-
ans may not exist.) Hence, by evaluating the objective
at each vertex and each in5nite ray of the partition we
solve the problem in O(n2d+1 log n) time.

In the convex case in Rd we can directly use the
approach of Cohen and Megiddo [4] to get a complex-
ity of O(n log2d+1 n). This approach relies only on the
fact that the objective function can be evaluated at any
point just using additions, multiplications by a scalar
and comparisons. Clearly, the ordered median objec-
tive function in this case falls into this class. More pre-
cisely, the complexity analysis involves several com-
ponents which we now discuss. First, we have to give
a bound T on the number of operations needed to eval-
uate the objective function at a given point. In the case
of ordered median functions this is O(n log n). The
number of comparisons to be performed is O(n log n)
and this can be done in r=O(log n) parallel phases us-
ing Ci =O(n) eOort in each phase [1]. Then the result
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by [4] states that the bound to 5nd an optimal solution
is O(d3T (

∑r
i=1�logCi)d) for a 5xed dimension d. In

our case we achieve the bound O(n log2d+1 n). (The
same bound can also be achieved by using the results
in Tokuyama [26].) The bound in [4] is achieved by
(recursively) solving O(log2 n) recursive calls to in-
stances of lower dimension. For d=1 the above gen-
eral bound (applied to our problem) gives O(n log3 n).
However, note that for our problem we actually solve
the case d=1 in Section 2.1.2 in O(n log2 n) time, an
improvement by a factor of log n. Therefore, for any
5xed d¿ 2, the bound will be reduced by a factor of
log n, and we have,

Theorem 7. Suppose that wj ¿ 0; for all vj ∈V ; and
06 �16 · · ·6 �n.Then for any @xed d; the (convex)
rectilinear ordered median problem can be solved in
O(n log2d n) time.

For comparison purposes, we note that the im-
portant special case of the k-centrum functions
(� = (0; : : : ; 0; 1; : : : ; 1)) has been recently solved in
O(n) time for any 5xed d, in Ogryczak and Tamir
[20].
We brieRy mention that the results on the rectilinear

model presented above can be extended to the more
general case where the rectilinear norm is replaced by
any polyhedral norm where the number of extreme
points of the unit ball is constant.

4. The discrete model

We have considered above the case where the or-
dered median can be located anywhere in the metric
space. Such a location model is referred to as a con-
tinuous model. In a discrete version of the problem,
the ordered median is restricted to some discrete set,
commonly the set V consisting of the existing facili-
ties. Clearly, these discrete problems can be solved by
evaluating the objective function at each one of the
points in the discrete set. If the discrete set is V and the
distances between the points in V are given, the total
eOort to solve the problem is O(n2 log n). For some
special cases this bound can be improved. For exam-
ple, the solution to the discrete convex tree case dis-
cussed above is attained at one of the nodes of an edge
containing the continuous solution. Therefore, the

continuous and the discrete solutions are derived using
the same computational eOort, namely O(n log2 n).

It is not yet knownwhether we can get sub-quadratic
time even for the discrete version of the contin-
uous convex rectilinear planar problem discussed
above. For the special case of the discrete un-
weighted k-centrum problem (wj = w; j = 1; : : : ; n),
an O(n log2n) algorithm can be obtained as follows.

If w ¡ 0 we use the results of Bespamyatnikh et al.
[2] to compute in O(n log2 n) the sum of the closest
k points in V to each one of the n points. The opti-
mal value for the discrete problem is attained at that
point where the sum is largest. If w ¿ 0, 5rst compute
in O(n log n) total time, for each point the sum of its
distances to all other points [14]. Next using [2], com-
pute in O(n log2 n) for p= n− k, the sum of the clos-
est p points in V to each one of the n points. Then,
by subtracting we have for each point in V , the sum
of its distances to the furthest k points. The optimal
value for the discrete problem is attained at that point
where the sum is smallest.
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